

Mobile Communications Chapter 5: Satellite Systems

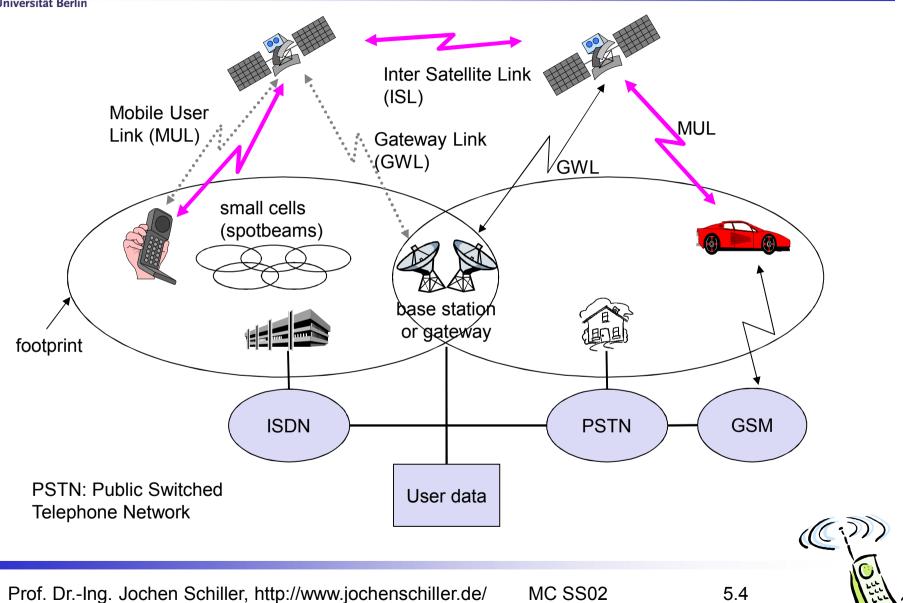
□ History
□ Basics
□ Localization
□ Systems

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02

History of satellite communication

- 1945 Arthur C. Clarke publishes an essay about "Extra Terrestrial Relays"
- 1957 first satellite SPUTNIK
- 1960 first reflecting communication satellite ECHO
- 1963 first geostationary satellite SYNCOM
- 1965 first commercial geostationary satellite Satellit "Early Bird" (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime
- 1976 three MARISAT satellites for maritime communication
- 1982 first mobile satellite telephone system INMARSAT-A
- 1988 first satellite system for mobile phones and data communication INMARSAT-C
- 1993 first digital satellite telephone system
- 1998 global satellite systems for small mobile phones

Applications


- Traditionally
 - weather satellites
 - □ radio and TV broadcast satellites
 - □ military satellites
 - □ satellites for navigation and localization (e.g., GPS)
- Telecommunication

 - global telephone connections
 backbone for global networks
 replaced by fiber optics
 - □ connections for communication in remote places or underdeveloped areas
 - □ global mobile communication
- → satellite systems to extend cellular phone systems (e.g., GSM or AMPS)

Classical satellite systems

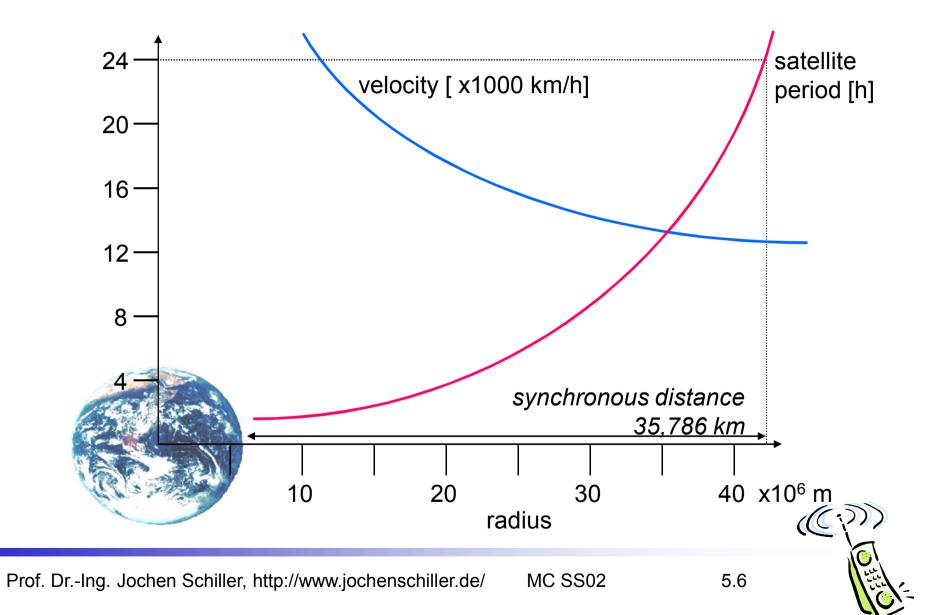
Satellites in circular orbits

- \Box attractive force $F_g = m g (R/r)^2$
- \square centrifugal force F_c = m r ω^2
- □ m: mass of the satellite
- \Box R: radius of the earth (R = 6370 km)
- $\hfill\square$ r: distance to the center of the earth
- \Box g: acceleration of gravity (g = 9.81 m/s²)
- \Box ω : angular velocity (ω = 2 π f, f: rotation frequency)

Stable orbit

 \Box F_g = F_c

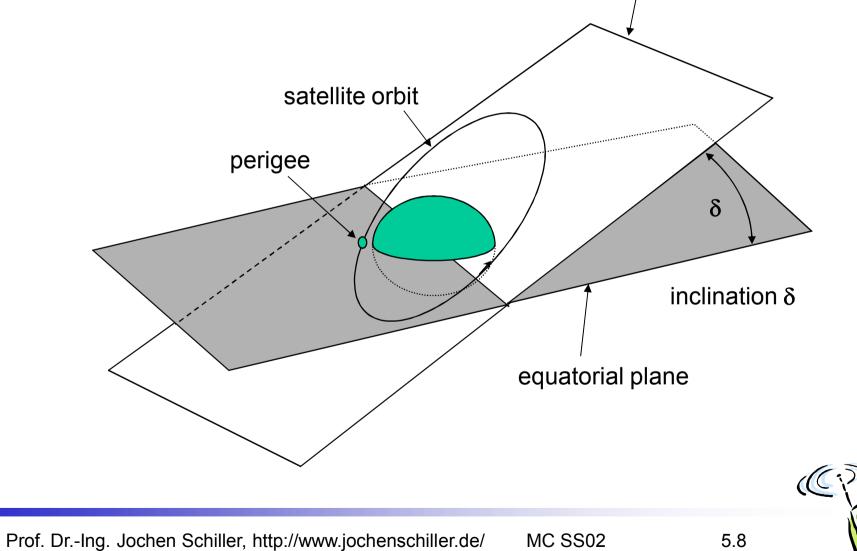
$$r = \sqrt[3]{\frac{gR^2}{\left(2\pi f\right)^2}}$$

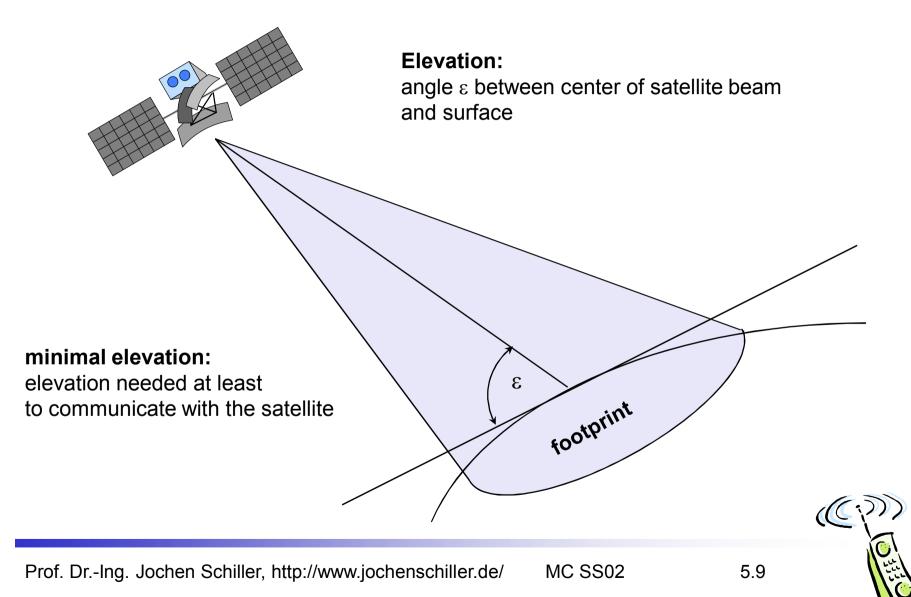


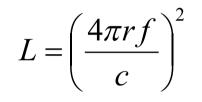
5.5

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02

Satellite period and orbits

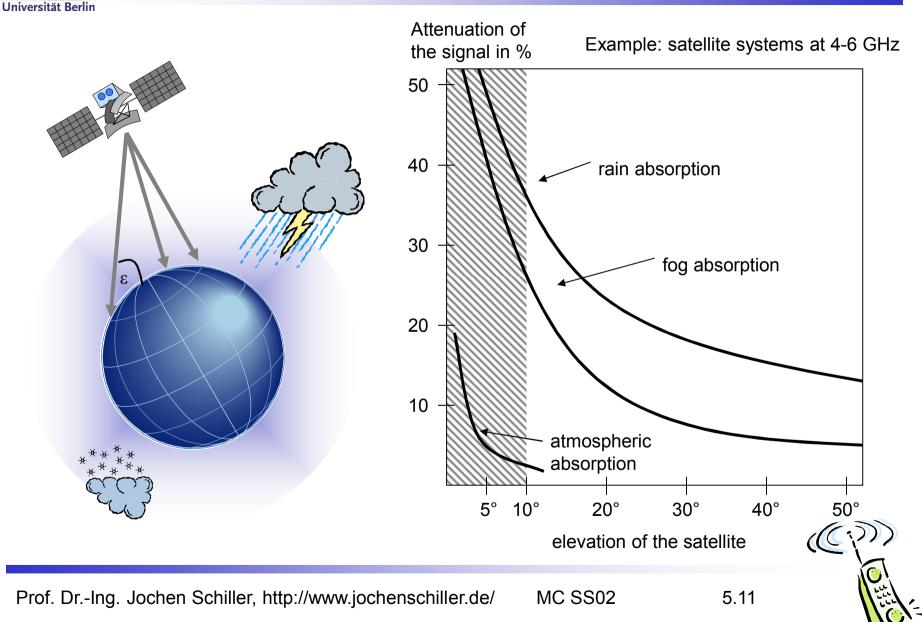



- □ elliptical or circular orbits
- □ complete rotation time depends on distance satellite-earth
- inclination: angle between orbit and equator
- □ elevation: angle between satellite and horizon
- LOS (Line of Sight) to the satellite necessary for connection
 high elevation needed, less absorption due to e.g. buildings
- Uplink: connection base station satellite
- Downlink: connection satellite base station
- □ typically separated frequencies for uplink and downlink
 - □ transponder used for sending/receiving and shifting of frequencies
 - □ transparent transponder: only shift of frequencies
 - □ regenerative transponder: additionally signal regeneration

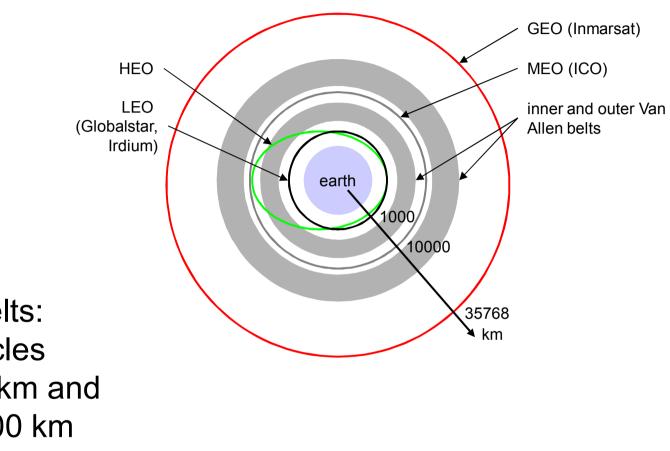


Link budget of satellites

- Parameters like attenuation or received power determined by four parameters:
- □ sending power
- □ gain of sending antenna
- distance between sender and receiver
- gain of receiving antenna
- Problems
- □ varying strength of received signal due to multipath propagation
- □ interruptions due to shadowing of signal (no LOS)
- Possible solutions
- □ Link Margin to eliminate variations in signal strength
- satellite diversity (usage of several visible satellites at the same time) helps to use less sending power


L: Loss f: carrier frequency r: distance c: speed of light

Atmospheric attenuation


Orbits I

Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit:

- □ GEO: geostationary orbit, ca. 36000 km above earth surface
- □ LEO (Low Earth Orbit): ca. 500 1500 km
- MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit): ca. 6000 - 20000 km
- □ HEO (Highly Elliptical Orbit) elliptical orbits

Van-Allen-Belts: ionized particles 2000 - 6000 km and 15000 - 30000 km above earth surface

Orbits II

Geostationary satellites

Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0°)

- → complete rotation exactly one day, satellite is synchronous to earth rotation
- □ fix antenna positions, no adjusting necessary
- satellites typically have a large footprint (up to 34% of earth surface!), therefore difficult to reuse frequencies
- bad elevations in areas with latitude above 60° due to fixed position above the equator
- □ high transmit power needed
- □ high latency due to long distance (ca. 275 ms)
- ➔ not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission

LEO systems

Orbit ca. 500 - 1500 km above earth surface

- □ visibility of a satellite ca. 10 40 minutes
- □ global radio coverage possible
- Iatency comparable with terrestrial long distance connections, ca. 5 - 10 ms
- □ smaller footprints, better frequency reuse
- □ but now handover necessary from one satellite to another
- many satellites necessary for global coverage
- more complex systems due to moving satellites
- Lower longevity (atmospheric drag, inner Van-Allen-Belt) Examples:
- Iridium (start 1998, 66 satellites)
 - Bankruptcy in 2000, deal with US DoD (free use, saving from "deorbiting")
- Globalstar (start 1999, 48 satellites)
 - Not many customers (2001: 44000), low stand-by times for mobiles. Bankruptcy in 2002. Re-structured in 2004

 $(\mathbb{C}$

MEO systems

Orbit ca. 5000 - 12000 km above earth surface

comparison with LEO systems:

- □ slower moving satellites
- less satellites needed
- simpler system design
- □ for many connections no hand-over needed
- □ higher latency, ca. 70 80 ms
- □ higher sending power needed
- special antennas for small footprints needed

Example:

ICO (Intermediate Circular Orbit, Inmarsat) start ca. 2000

Bankruptcy, planned joint ventures with Teledesic, Ellipso – cancelled again, start planned for 2003. Ended-up deploying one GEO.

Routing

One solution: inter satellite links (ISL)

- reduced number of gateways needed
- forward connections or data packets within the satellite network as long as possible
- only one uplink and one downlink per direction needed for the connection of two mobile phones

Problems:

- more complex focusing of antennas between satellites
- high system complexity due to moving routers
- higher fuel consumption
- thus shorter lifetime

Iridium and Teledesic planned with ISL

Other systems use gateways and additionally terrestrial networks

Localization of mobile stations

Mechanisms similar to GSM

Gateways maintain registers with user data

- □ HLR (Home Location Register): static user data
- □ VLR (Visitor Location Register): (last known) location of the mobile station
- □ SUMR (Satellite User Mapping Register):
 - satellite assigned to a mobile station
 - positions of all satellites

Registration of mobile stations

- □ Localization of the mobile station via the satellite's position
- □ requesting user data from HLR
- □ updating VLR and SUMR

Calling a mobile station

- □ localization using HLR/VLR similar to GSM
- □ connection setup using the appropriate satellite

Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites

- □ Intra satellite handover
 - handover from one spot beam to another
 - mobile station still in the footprint of the satellite, but in another cell
- □ Inter satellite handover
 - handover from one satellite to another satellite
 - mobile station leaves the footprint of one satellite
- □ Gateway handover
 - Handover from one gateway to another
 - mobile station still in the footprint of a satellite, but gateway leaves the footprint
- □ Inter system handover
 - Handover from the satellite network to a terrestrial cellular network
 - mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.

Overview of LEO/MEO systems

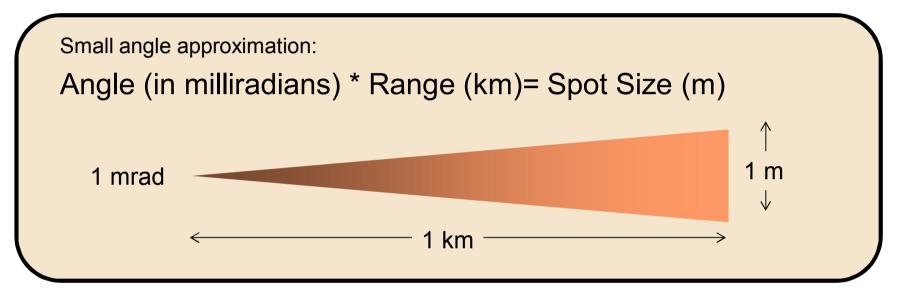
	Iridium	Globalstar	ICO	Teledesic
# satellites	66 + 6	48 + 4	10 + 2	288
altitude (km)	780	1414	10390	ca. 700
coverage	global	±70° latitude	global	global
min. elevation	8°	20°	20°	40°
frequencies	1.6 MS	1.6 MS ↑	2 MS ↑	19↓
[GHz	29.2 ↑	2.5 MS \downarrow	2.2 MS ↓	28.8 ↑
(circa)]	19.5↓	5.1 ↑	5.2 ↑	62 ISL
	23.3 ISL	6.9↓	7↓	
access method	FDMA/TDMA	CDMA	FDMA/TDMA	FDMA/TDMA
ISL	yes	no	no	yes
bit rate	2.4 kbit/s	9.6 kbit/s	4.8 kbit/s	64 Mbit/s ↓
				2/64 Mbit/s ↑
# channels	4000	2700	4500	2500
Lifetime	5-8	7.5	12	10
[years]				
cost	4.4 B\$	2.9 B\$	4.5 B\$	9 B\$
estimation				

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02

Pr = Pt - 92.4 - 20 Log F(GHz) - 20 Log D(Km) - At + Gt + Gr

G- Gain of antenna t – transmission; r – reception At – atmospheric attenuation (dust, rain)

D =
$$36000 \text{ Km}$$
 -> $20 \text{ LogD} = 91,1$
F= 2 GHz -> $20 \text{ LogF} = 6$
A=10 dB
Gt = Gr = 30 dBi
Pt = $40 \text{ dBm}(10 \text{ W})$ -> Pr = - $99,5 \text{ dBm}$

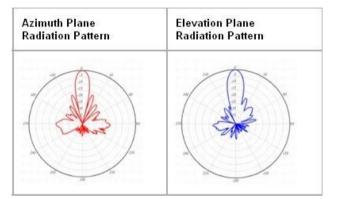


5.21

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02

$$1^{\circ} \approx 17 \text{ mrad} \rightarrow 1 \text{ mrad} \approx 0.0573^{\circ}$$

Divergence	Range	Spot Diameter
1 mrad	36000 km	36 Km
17 mrad (1 deg)	36000 km	612 Km



Gain(dBi) = 10 Log $(2\pi / \text{Div}) = 10 \text{ Log } (360^{\circ}/\text{Div})$

Isotropic Antenna -> Div = $2\pi / 360^{\circ}$ (both Vert. and Hor.) Gain(dBi) = 0

Cisco AIR-ANT3338 21dBi Parabolic Dish Azimuth 3dB BW =12° Elevation 3dB BW =12°

Examples:

Div =2°	->	Gain(dBi) = 22,6 dBi (2x 22,6 if in both planes)
Div =4°	->	Gain(dBi) = 19,6 dBi
Div =8°	->	Gain(dBi) = 16,6 dBi
Div=12°	->	Gain(dBi) = 14,7 dBi (Vert and Hor: 14,7 x 2 = 29,4 dBi)

Nota: a antena da Cisco com Div= 12º tem 21 dBi de ganho, (vs 29.4 dBi teórico) devido a perdas noutras direcções.

5.23


Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02

Ae = Aphysical * η (η - Antenna efficiency 50%-80%)

Pr = Pt – 10 Log(4 * Footprint / (Pl² *Ae)) – At

